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Original Article

Anatomy of a seasonal influenza epidemic forecast
Robert Moss, Alexander E Zarebski, Peter Dawson, Lucinda J Franklin, Frances A Birrell 
and James M McCaw

Abstract

Bayesian methods have been used to predict the timing of infectious disease epidemics in various set-
tings and for many infectious diseases, including seasonal influenza. But integrating these techniques 
into public health practice remains an ongoing challenge, and requires close collaboration between 
modellers, epidemiologists, and public health staff.

During the 2016 and 2017 Australian influenza seasons, weekly seasonal influenza forecasts were 
produced for cities in the three states with the largest populations: Victoria, New South Wales and 
Queensland. Forecast results were presented to Health Department disease surveillance units in these 
jurisdictions, who provided feedback about the plausibility and public health utility of these predictions.

In earlier studies we found that delays in reporting and processing of surveillance data substantially 
limited forecast performance, and that incorporating climatic effects on transmission improved 
forecast performance. In this study of the 2016 and 2017 seasons, we sought to refine the forecasting 
method to account for delays in receiving the data, and used meteorological data from past years 
to modulate the force of infection. We demonstrate how these refinements improved the forecast’s 
predictive capacity, and use the 2017 influenza season to highlight challenges in accounting for popu-
lation and clinician behaviour changes in response to a severe season.

Keywords: influenza; surveillance; forecasting; mathematical modelling; preparedness; response; 
research translation

Introduction

Methods for predicting the dynamics of infec-
tious disease epidemics have received much 
attention since 20121, with particular focus on 
seasonal influenza epidemics in temperate cli-
mates.2–7 The United States Centers for Disease 
Control and Prevention (CDC) holds an annual 
influenza forecasting competition8 that attracts 
teams from around the world. The epidemic 
forecasting methods tested in these settings have 
the potential to support public health prepared-
ness and response activities, although a number 
of practical challenges must be addressed if they 
are to be adopted and integrated into public 
health practice.3,9

We have previously tailored epidemic forecasting 
methods to Australian data5,6 and have reported 

on our pilot of a real-world application of these 
forecasts during the 2015 influenza season in 
Melbourne, Australia.9 In that study, we used 
influenza case notification counts to charac-
terise influenza activity in one city whereby for 
each week of the season we generated forecasts 
of the weekly case notification counts for future 
weeks. A fundamental challenge encountered 
in that study was the delay in reporting and 
processing of case notifications, which arose due 
to an unprecedented number of notifications 
(relative to seasonal intensity10). Timeliness can 
also be affected by laboratory capacity when 
disease activity is high, and clinician testing 
behaviours also change over the course of the 
influenza season in response to disease activity 
in the community.
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In this paper, we report on our forecasts for the 
2016 and 2017 influenza seasons, in which we 
also collaborated with NSW and Queensland 
Departments of Health, to produce influenza 
forecasts for metropolitan Melbourne, Sydney, 
Brisbane, Gold Coast and Toowoomba. A key 
goal of this study was to account for delays in 
reporting and processing of case notifications, 
since relying on incomplete data introduces 
systematic biases into the forecasts and can 
both reduce the forecast accuracy and also 
increase the forecast uncertainty. We trialled a 
method for reducing these biases in the 2016 and 
2017 forecasts.

We introduced 2 further refinements in our 2017 
forecasts. The first was to use smoothed absolute 
humidity data from previous years to character-
ise climatic effects on influenza transmission; 
we have previously shown that this can improve 
the forecast predictive skill.7 The second was 
to base our initial expectations for the timing 
and size of the epidemic peak on the observed 
characteristics of previous seasonal influenza 
epidemics. These characteristics are influenced 
by many variables, including the circulating 
virus (sub)types, vaccine coverage, vaccine 
effectiveness and the number of specimens col-
lected for testing.

Methods

Influenza notification data

The notifiable diseases dataset, from which 
we produce our forecasts, includes only those 
cases which meet the Communicable Diseases 
Network Australia (CDNA) case definition for 
laboratory-confirmed influenza.11 These cases 
represent a small proportion of the actual cases 
in the community.12 Some notifications did not 
include a symptom onset date, so we used the 
specimen collection date as a proxy. Using speci-
men collection date is considered not to distort 
the data substantially since we used weekly case 
counts, while symptomatic influenza infection 
(used here as a proxy for transmission potential) 
typically lasts several days13 and the majority 
of notifications arise from tests that identify 
the presence of virus (e.g. PCR) rather than the 

presence of antibodies (i.e. serology). We also 
mitigated the potential impact of events such 
as public holidays by generating forecasts on 
Thursdays for the week ending on the previous 
Sunday (i.e. 4 days later).

Separate influenza forecasts were produced for 
metropolitan Melbourne, Sydney, Brisbane, 
Gold Coast and Toowoomba. The state capitals 
(Melbourne, Sydney, Brisbane) are also the 
primary urban centres in these states, and are 
located at different latitudes on the east coast of 
Australia. Two other locations in proximity to 
Brisbane were also chosen so that comparisons 
could be made against the Brisbane forecasts: 
the Gold Coast (also located on the east coast, 
about 60 km south of Brisbane) and Toowoomba 
(inland, about 125 km west of Brisbane). Both 
are large regional population centres that 
historically experience significant seasonal 
influenza activity.

Forecasting methods

Forecasts were generated every Thursday from 
April to November 2016, and from April to 
November 2017, using weekly case notification 
counts up to the most recent week (ending on 
Sunday). We reported the median, 50% credible 
interval and 90% credible interval for the future 
predicted weekly notification counts and tim-
ing of the epidemic peak. Every week the lead 
modeller (R.  Moss) emailed a summary and 
analysis of these outputs to participating public 
health staff in each jurisdiction, who were asked 
to provide feedback about their interpretation of 
the forecast predictions, the plausibility of these 
predictions, and what aspects of these fore-
casts were of particular utility for their public 
health activities.

As described in detail elsewhere5,6, our forecast 
method combines an SEIR (susceptible-exposed-
infectious-recovered) population model of infec-
tion with the weekly influenza case notification 
counts, through the use of a particle filter. The 
weekly influenza case notification counts were 
modelled using a negative binomial distribution 
with a fixed dispersion parameter k, and assum-
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ing some constant “background” notification 
rate. The expected number of cases (above the 
background rate) was proportional to the weekly 
incidence of infection in the model, and this 
proportion was characterised by the observation 
probability pid.

The observation probability represented the 
probability of an infected individual resulting 
in a notified case (i.e. the probability of seeking 
health care and having a specimen collected). 
Values for pid  and k were selected from retro-
spective forecasts using notifications data from 
previous seasons. The background notification 
rate was estimated using notification counts 
from March to May, inclusive, to reflect the dis-
ease activity observed in autumn (i.e. just prior 
to the season onset). This also avoids possible 
over-estimation by ignoring earlier months, 
where there may be continued importation of 
influenza cases during the northern-hemisphere 
influenza season. These parameters were 
selected separately for each of the forecast loca-
tions (Melbourne, Sydney, Brisbane, Gold Coast, 
Toowoomba), and are reported in Table S1.

Each week, before generating a forecast for 
each of the locations, we measured how many 
additional cases (Δi) had been reported for the 
previous week during the current week (i.e. since 
the previous forecast was generated). We then 
assumed that the number of cases reported for 
the current week (ci+1) could increase by the 
same amount, and conditioned the model simu-
lations on the likelihood of observing between 
ci+1 and ci+1+Δi cases in the current week. To illus-
trate, consider the scenario where 200 cases are 
reported for week n when the forecast for week n 
is generated, and that one week later (a) this total 
has increased to 250 cases; and (b) there are 300 
cases reported for week n+1. When we generate 
the forecast at the end of week n+1, we therefore 
assume that the total for week n+1 could be as 
high as 300 + (250-200)=350 cases. We refer to 
these estimated case totals as “estimated upper 
bounds” in the remainder of this manuscript.

Prior to 2017, the SEIR model parameters were 
independently sampled from broad, uniform 

distributions (see Table  S2). This meant that 
the forecast predictions initially considered a 
much wider range of epidemics (in terms of tim-
ing, duration, and magnitude) than have been 
observed. In 2017, we modified this sampling 
process to better reflect the characteristics of 
previous influenza seasons. This means that 
before an epidemic signal is present in the noti-
fications data, the forecasts predict outbreaks 
of similar timing, duration, and magnitude, as 
observed in past epidemics. This was achieved 
by (a) constructing a multivariate normal dis-
tribution for the peak timing and size in previ-
ous years; (b) sampling parameter values from 
the uniform distributions; (c) simulating the 
epidemic that these parameter values describe; 
and (d) accepting each sample in proportion 
to the simulated epidemic’s probability density. 
Identification of the circulating influenza (sub)
types very early in the influenza season could be 
used to further refine this prior, by constructing 
it from past epidemics in which similar (sub)
types were circulating.

In 2017, we also introduced the concept of “sea-
sonal forcing” into the model, to account for 
the influence that climate has on the force of 
infection. This seasonality was characterised by 
smoothed absolute humidity data for each city 
in previous years, using time-series data from a 
single weather station in each city, and we have 
previously shown that this can improve the fore-
casts’ predictive skill7 (see the supplementary 
material for details14). Note that there are many 
other factors that influence the overall shape of 
the case notifications data, and forecast perfor-
mance is highest when humidity exerts only a 
modest effect on transmission in the simulation 
model. Humidity is not responsible for initiat-
ing epidemic activity in the model. Indeed, it is 
unknown to what extent climatic factors such as 
humidity directly contribute to transmission in 
temperate climates, versus human behavioural 
changes in colder conditions.

Results

Figure 1 shows the Sydney influenza forecast 
for the week ending 31 July 2016, which was 
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generated on 4 August 2016. The number of case 
notifications for each of the proceeding weeks 
at the time of forecasting are shown as black 
points, while hollow points show the totals for 
every week as reported by the end of the season. 
Note that the weekly totals for the weeks ending 
24 July and 31 July increased after this forecast 
was generated. At the time of forecasting 838 
cases were reported for the week ending 31 July; 
we estimated an upper bound of 1,238 cases 
(as indicated by the red line) and the final total 
was 1,191 cases (indicated by the hollow point). 
The forecast prediction comprises a median 
prediction (blue line) and credible intervals 

(shaded blue regions) that indicate the forecast 
uncertainty. In a perfect forecast, the future 
case counts would be distributed evenly above 
and below the median prediction, about half of 
these counts would fall within the 50% credible 
interval, and about 90% of these counts would 
fall within the 90% credible interval. In this 
example, the epidemic peak is predicted to occur 
about 2 weeks earlier than the true peak, and the 
median prediction under-estimates most of the 
future case counts. Note that the peak timing 
predictions are also presented as separate plots, 
and will be shown in subsequent figures in this 
manuscript.

Figure 1: Example of an influenza forecast: Sydney, 31 July 2016. The weekly number of notified 
laboratory-confirmed influenza cases at the time of the forecast are shown as black points; hollow 
points show the case numbers as reported at the end of the season. There were 838 cases for the 
week ending 31 July when this forecast was generated, and our estimated upper bound was 1,238 
cases. This forecast was therefore conditioned on the likelihood of observing between 838 and 
1,238 cases, as indicated by the vertical red line. The forecast comprises a median prediction (blue 
line) and credible intervals (shaded blue regions) indicate the forecast uncertainty.
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Figure 2: The change in weekly case counts, from the initially-reported values (grey horizontal 
lines) to the final values as reported at the end of the season (grey hollow points), and the 
estimated upper bounds (black stars) given the initially-reported counts. Results are shown for 
each of the forecast locations in the 2016 and 2017 influenza seasons.
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Figure 2 shows how the number of cases reported 
for each week continued to increase in subse-
quent weeks: each grey bar depicts the interval 
between the initial count (i.e. at the time of fore-
casting) and the count reported at the end of the 
season. The estimated upper bounds are shown 
as black stars; perfect estimates would coincide 
with the top of each grey bar. With the exception 
of Melbourne, where there were longer delays in 
case notifications9, the upper bound estimates 
performed well and generally provided much 
more accurate estimates of the final case counts. 
The performance of these estimates are summa-
rised in Table 1.

Table 1: A summary of the upper bound 
estimates, expressed as percentages of the 
final counts for each week: mean absolute 
error (MAE), standard deviation (SD), and the 
results of the 2-sample, 2-sided Kolmogorov-
Smirnov test (KS test). This test was used to 
compare the residuals (a) prior to the epidemic 
peak, and (b) after the epidemic peak; 
significant differences (P<0.05, shown in bold) 
were identified for: Sydney, Gold Coast and 
Toowoomba in 2017.

Setting MAE SD KS test

NSW: Sydney 2016 7.9 11.5 0.165

NSW: Sydney 2017 13.0 14.8 0.002

Qld: Brisbane 2016 6.6 11.1 0.709

Qld: Brisbane 2017 5.3 7.5 0.065

Qld: Gold Coast 2016 10.9 12.4 -

Qld: Gold Coast 2017 8.0 10.8 0.03

Qld: Toowoomba 2016 10.5 15.1 -

Qld: Toowoomba 2017 5.7 7.5 0.013

Vic: Melbourne 2016 31.0 48.3 0.316

Vic: Melbourne 2017 34.4 46.1 0.054

The upper bound is estimated by adjusting the 
initially-reported value, based on the observed 
increase in case counts for prior weeks. However, 
disease incidence increases faster than linearly 
in the early stages of an epidemic, and decreases 
faster than linearly in the later stages of an epi-
demic. It is therefore reasonable to expect that 
the upper bound estimates will (a) systematically 

underestimate the final counts for the weeks 
prior to the epidemic peak; and (b) systemati-
cally overestimate the final counts for the weeks 
after the epidemic peak. In order to detect this 
type of bias, we used the two-sample, two-sided 
Kolmogorov-Smirnov test to identify significant 
differences between the residuals prior to, and 
after, the observed peaks. Significant differences 
(P<0.05) were only identified for Gold Coast, 
Sydney and Toowoomba in 2017. Note that there 
were insufficient data points to evaluate this test 
for the Gold Coast and Toowoomba epidemics 
in 2016, as delays in weekly case counts only 
became evident at the time of the epidemic peak.

The peak timing predictions for 2016 are shown 
in Figure 3, over the 15 weeks prior to the epi-
demic peaks. We used non-informative model 
priors in 2016, and so the early peak timing 
predictions in all cities were highly uncertain 
(i.e. very broad) and inaccurate. From 5–8 weeks 
prior to the epidemic peak, once the notifica-
tions data contained evidence of epidemic activ-
ity, the peak timing predictions became much 
more certain (i.e. narrow) and, with the excep-
tion of Melbourne where the weekly counts were 
subject to larger delayed increases (see Figure 2), 
much more accurate. In the 5 weeks prior to the 
epidemic peak, the peak timing predictions were 
accurate to within one week in the Queensland 
locations included in this study, and to within 2 
weeks in Sydney.

The peak timing predictions for 2017 are shown 
in Figure 4, and reflect 2 key results. Firstly, the 
2017 seasonal epidemics were so large (in terms 
of notified cases) that they lay outside of our 
model priors. That is, the observed epidemics 
were so large that they lay outside of the admit-
ted possibilities in our original forecasts. This 
became evident in July and August, as epidemic 
activity continued to increase beyond all expec-
tations (from both expert opinion and from 
historical data). We re-calibrated our forecasts 
to correct for this.

Accordingly, we used a higher observation prob-
ability P*id=4×Pid, based upon expert opinion 
during our weekly forecast discussions and also 
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Figure 3: Week by week forecasts of the 2016 epidemic peak timing, plotted against the number of 
weeks prior to the actual peak at which the forecast was made. The timing is reported as ISO 8601 
week numbers and the timing of the actual peaks are indicated by the horizontal dashed lines. 
The predictions are imprecise and inaccurate until the case notifications data contain evidence of 
a seasonal epidemic.
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Figure 4: Week by week forecasts of the 2017 epidemic peak timing, plotted against the number of 
weeks prior to the actual peak at which the forecast was made. The timing is reported as ISO 8601 
week numbers, and the timing of the actual peaks are indicated by the horizontal dashed lines. 
The predictions are reasonably precise and accurate prior to the seasonal epidemics, due to our 
use of informative priors. The predictions then become inaccurate due to the unprecedented scale 
of the 2017 influenza season.
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informed by our experiences in our 2015 pilot 
study.9 Note that this was a coarse adjustment; 
there was no strong evidence to rule out a three-
fold, five-fold, or other increase. It is important 
to note that this adjustment was not a simple 
re-scaling of the forecast predictions. The obser-
vation probability characterises the relationship 
between model infections and case notifications. 
Model infections occur by removing individuals 
from the susceptible population, and so a change 
in the observation probability affects how rap-
idly the susceptible population is depleted in 
the model. It is this depletion of the susceptible 
population that determines when the epidemic 
peaks and then begins to decrease. Therefore, a 
change in the observation probability affects the 
timing and duration of the predicted epidemic, 
as well as its size. The re-calibrated peak timing 
predictions for 2017 are shown in Figure 5, and 
are greatly improved when compared to the pre-
dictions obtained prior to this re-calibration (as 
shown in Figure 4). The Melbourne forecast per-
formance was again affected by large increases 
in weekly case counts, relative to the initially-
reported values (see Figure 2).

As indicated by the dashed vertical lines in 
Figure 5, this re-calibration was performed 2 
weeks prior to the peaks in Sydney and the Gold 
Coast, 3 weeks prior to the peaks in Brisbane 
and Toowoomba and 5 weeks prior to the peak 
in Melbourne. In ideal circumstances, evidence 
of inappropriate model calibration would be 
identified and acted upon earlier than 2–3 weeks 
prior to the epidemic peak, so that the updated 
predictions would be of greater utility.

The second key result from our 2017 forecasts 
is the effect of the informative model priors, as 
shown in Figures 4 and 5. Prior to the evidence 
of epidemic activity, the peak timing predic-
tions were much more certain (i.e, narrow) than 
at the corresponding period in 2016, and they 
were also accurate, because the 2017 seasonal 
epidemics peaked at a similar time to previous 
seasonal influenza epidemics. Had the forecasts 
been appropriately calibrated at the start of the 
season (e.g. by having prior knowledge that a 

larger than normal epidemic might be expected) 
these priors would have substantially improved 
forecast performance.

In 2016, we obtained accurate peak size predic-
tions for Brisbane and Gold Coast 2 weeks prior 
to the peak, and underestimated the peak size 
in Sydney, Toowoomba and Melbourne. In 2017, 
all forecasts underestimated the peak size. The 
size of the epidemic peak is intrinsically harder 
to predict than its timing, because the peak size 
is far more sensitive to the parameters; even a 
small change in R0 or the observation probability 
can lead to a substantial change in the peak size. 
Based on previous forecasting studies, we would 
only expect to have good predictions of the peak 
size 2–3 weeks prior to the peak.5,6

Discussion

The forecasting refinements that we introduced 
in 2016 and 2017 improved the forecast perfor-
mance, and so we will continue to use them 
in future influenza seasons. We know that the 
number of cases reported for the most recent 
week is always an underestimate of the true 
value, and that unless this is accounted for, it 
introduces a negative bias into the forecasts. 
The method that we presented here to account 
for delays in case notifications data yielded 
reasonably accurate predictions of the weekly 
case totals, especially for delays of 1–2 weeks; its 
performance was reduced when longer delays 
were evident. With confidence in this method, 
in future influenza seasons we anticipate condi-
tioning the forecasts on the likelihood of observ-
ing the estimated upper bounds themselves, 
rather than on the likelihood of observing any 
value between the currently-reported total and 
the estimated upper bounds (as was done in this 
study). This will avoid the negative bias associ-
ated with using the reported number of cases for 
the most recent week. These improved estimates 
of the weekly case totals are also extremely use-
ful when re-calibrating the forecasts, because 
they allow greater confidence to be placed in 
the inferences drawn from the data. This is of 
particular relevance in seasons like 2017, where 
the epidemics that occurred in each city differed 
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Figure 5: Week by week forecasts of the 2017 epidemic peak timing, once the forecasts were 
re-calibrated. The timing of the actual peaks are indicated by the horizontal dashed lines, and 
the vertical dotted lines show when the re-calibrations were performed. The predictions are 
substantially improved as a result of the re-calibration (i.e. compared to Figure 4).
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greatly from previous years’ epidemics, and were 
beyond the scope of epidemics considered in our 
model priors. The additional refinements that 
were introduced in 2017 — seasonal modula-
tion of transmission and the informative model 
priors — also improved forecast performance, 
although this cannot be quantified precisely due 
to the unprecedented scale of the 2017 influenza 
season in eastern Australia.

Indeed, the absence of denominator data for the 
case notifications is a fundamental challenge 
of using these data.15 It means that forecast 
accuracy can be very low when there is a sub-
stantial change in epidemic scale from one year 
to the next, because the relative contributions 
of increased disease activity, clinical severity of 
disease, and increased testing (and any change 
in vaccine effectiveness, for that matter) can-
not be reliably distinguished, and these factors 
can combine to greatly increase the scale of 
the case notifications data (as appears to have 
occurred in 201716). It is true that case notifica-
tion denominators are available in some juris-
dictions, but this was not the case for all of the 
locations considered in this study. For simplicity, 
we elected to use the same type of surveillance 
data in each setting. Incorporating percentage-
positive data into this forecasting framework 
also bears careful consideration because, similar 
to the case notification counts used here, they 
are influenced by healthcare-seeking behaviours 
and testing practices.

This can be surmounted to some degree by 
admitting a wider range of epidemic sizes in the 
model prior, at the cost of increasing forecast 
uncertainty. It could also be mitigated by iden-
tifying the circulating strains (and adjusting 
the model to incorporate knowledge about the 
virulence of the predominant circulating strain, 
or accounting for the degree of evolutionary 
change17) in the early stages of the epidemic 
and adjusting the expected epidemic size in the 
model priors. We are currently exploring various 
avenues for identifying early signals of substan-
tially larger (or smaller) seasons, including syn-
thesising surveillance data across multiple levels 
of the surveillance pyramid12, and using genetic 

data obtained from specimens collected early 
in the season. The ability to define appropriate 
expectations, and to adjust them as new evi-
dence become available, is an important meth-
odological challenge for the global infectious 
disease forecasting community. Addressing this 
challenge requires both a better understanding 
of the biological drivers of transmission and 
new approaches to make best use of novel data 
streams.18

A simpler alternative, which capitalises on the 
use of an informative model prior, would be 
to assume that the timing of the seasonal peak 
will be consistent with the distribution of peak 
timing observed in previous seasonal influenza 
epidemics. As evidence of epidemic activity 
becomes apparent in the case notifications data, 
if the predicted peak timing in the forecasts 
begin to differ from this peak timing distribu-
tion, the forecasts could be re-calibrated so as to 
yield peak timing predictions that are consistent 
with this distribution. In 2017, this would have 
naturally increased the scale of the forecast 
epidemics, because the peak timing predictions 
differed greatly from the model priors (Figure 
4). Such an approach for continual re-calibration 
of the case notifications data could be used to 
estimate the case notifications denominator, and 
could be validated in those jurisdictions where 
denominators are available.

Observations of the preceding northern-hemi-
sphere influenza season could conceivably assist 
in calibrating the forecasts, under the assump-
tion that the following southern-hemisphere 
influenza season would have similar charac-
teristics. However, the relationship between the 
northern and southern hemispheres is highly 
variable and biologically complex.19 The experi-
ence of influenza across Australia is also highly 
variable. In particular, the northern regions 
are tropical/subtropicaand experience endemic 
influenza activity with sporadic outbreaks, in 
contrast to the seasonal activity typical of tem-
perate climates. Epidemic forecasting methods 
can be used in such settings to predict disease 
activity over shorter timescales (e.g. 1–3 weeks 
ahead20). This would require modifications to 
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the infection model used in this study, such as 
changing how the background rate is estimated 
and how climatic factors influence transmission 
(about which there is much uncertainty21).

Reliable epidemic forecasts could support 
public health preparedness and response in 
several ways. For example, there is evidence that 
vaccine-acquired immunity can wane quickly 
enough that provision of seasonal influenza 
vaccine too early in the year might result in vac-
cinees having little, if any, protection when it is 
most needed.22 If the timing of the seasonal peak 
were known sufficiently far in advance, it could 
influence vaccination policies and help ensure 
that vaccine-acquired immunity is maintained 
while the risk of infection is high. There is also 
the issue of influenza virus co-circulation; recent 
years have seen co-circulation of influenza types 
A and B in Australia, with type A dominating 
early and type B dominating later in the sea-
son. Accurately modelling the co-circulation 
of multiple influenza viruses requires precise 
knowledge about, e.g. population susceptibil-
ity and cross-protective immunity.23 However, 
since the co-circulation of influenza types A and 
B typically exhibits 2 distinct epidemic curves, 
an alternative is to model each subtype/lineage 
as circulating independently. Combining these 
forecasts with knowledge of relevant clinical 
factors (e.g. expected age distribution of severe 
cases) could then be used to predict measures of 
clinical burden such as influenza-related hospi-
talisations.

Conclusions

Ultimately, to improve our understanding of 
seasonal influenza burden we need to synthesise 
data from many levels of the disease surveillance 
pyramid24,25, and this challenge is exacerbated 
when trying to develop this understanding 
for near-real-time and/or predictive purposes. 
These kinds of data are available in Australia, 
from healthcare-seeking behaviours reported in 
Flutracking weekly surveys12 to sentinel general 
practice influenza-like illness (ILI) data10 and 
sentinel hospital influenza admissions data26, 
but synthesising these disparate data sources 

in a meaningful way is highly non-trivial.6,27,28 
Challenges include differences in case specific-
ity (e.g. syndromic diagnoses vs laboratory-
confirmed influenza), reporting delays, and 
the sample populations (e.g. Flutracking par-
ticipants, sentinel sites). Engagement with public 
health staff is also critical to improving forecast 
performance (e.g. by incorporating expert 
knowledge) and for ensuring the value of these 
forecasts as a tool for public health.29,30
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